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[1] State-space models were applied to several climate
indices associated with the El Niño–Southern Oscillation
(ENSO), including the Southern Oscillation Index (SOI) and
its component sea level pressure series; the NINO3 sea
surface temperature index; and the Northern Oscillation
Index (NOI). The best models for each series include a
significant long-term nonparametric trend combined with a
stochastic stationary cyclic term that clearly delineates the
El Niño and La Niña events. There is no evidence that the
frequency of ENSO events has changed over the 20th
century. The long-term trend, however, has contributed to an
apparent increase in the magnitude of recent El Niño events.
This trend, potentially related to global warming, has
increased the level of each series by an amount equal to
30–50% of the amplitude of their corresponding annual
cycle or cyclic ENSO term. Thus, the background sea surface
temperature in the eastern equatorial Pacific is more than
0.5�C warmer now than prior to 1950, implying a greater
overall impact of El Niño events. Citation: Mendelssohn, R.,

S. J. Bograd, F. B. Schwing, and D. M. Palacios (2005), Teaching

old indices new tricks: A state-space analysis of El Niño related

climate indices, Geophys. Res. Lett., 32, L07709, doi:10.1029/

2005GL022350.

1. Introduction

[2] Among the most commonly used and analyzed sets
of climate time series are the El Niño indices such as the
Southern Oscillation Index (SOI) [Horel and Wallace,
1981; Philander, 1990; Trenberth, 1984; Trenberth and
Hoar, 1996; Trenberth and Shea, 1987] and the related
NINO.x sea surface temperature indices [Mann et al., 2000;
Trenberth, 1997]. Given their frequent use in the literature,
it would seem unlikely that much new information could be
extracted from further analysis of these indices. We present
a state-space decomposition and analysis of the SOI, its
component sea level pressure (SLP) series (Darwin and
Tahiti), and the NINO3 index, that shows that each index
contains a significant, yet previously unidentified, underly-
ing trend separate from the El Niño-Southern Oscillation
(ENSO) signal. The ENSO signal is best reflected in a
stochastic but stationary cycle, and the SOI index no better
reflects the El Niño events than do the individual pressure
series that comprise it. These results imply that the ENSO
cycle, though stationary, is superimposed on a long-term
trend that is changing the apparent magnitude of the El Niño
and La Niña events.

2. Data and Methods

[3] We analyzed the monthly reconstructed SOI from
the COADS data set (available from http://tao.atmos.
washington.edu/data/soicoads2/), the reconstructed SLP
series for Darwin and Tahiti (available from the same site),
and a yearly version of the NINO3 index from Mann et al.
[2000]. This version of the NINO3, which has only a
constant mean removed from the series, is used to minimize
the effects of other filters or analyses on the data. We also
included the Northern Oscillation Index (NOI) [Schwing et
al., 2002] (available at http://www.pfeg.noaa.gov) in the
analysis in order to examine extratropical effects.
[4] The time series were analyzed using a state-space

decomposition [Harvey, 1989; Durbin and Koopman,
2001], which we have applied previously to examine
long-term changes in the mean and seasonal components
in many other climate time series [Mendelssohn et al., 2003,
2004, and references therein]. State-space models allow for
a series to be decomposed into a variety of different
independent components, such as a nonparametric or fixed
mean (trend), autoregressive (AR) component, stochastic
cycle, stochastic seasonal, etc. As state-space models are
statistical models with a well-defined likelihood, model
comparison and selection can be performed using criteria
such as the AIC [Akaike, 1973].
[5] For each series analyzed, we estimated the following

models:
[6] 1. A nonparametric trend, a stochastic seasonal (if

monthly data), and an observational error term.
[7] 2. Model 1 plus an AR term of order 1.
[8] 3. Model 1 plus one or more stationary stochastic

cycles.
[9] 4. All of the above with a fixed mean and/or a

deterministic seasonal.
[10] The state-space specification of a stochastic cycle

[Durbin and Koopman, 2001] is:
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where yt and y*t are the states, lc is the frequency, in
radians, in the range 0 < lc � p, kt and k*t are two mutually
uncorrelated white noise disturbances with zero means and
common variance sk

2, and r is a damping factor. The
damping factor r in (1) accounts for the time over which a
higher amplitude event (consider this to be a ‘‘shock’’ to the
series) in the stochastic cycle will contribute in subsequent
cycles. A stochastic cycle has changing amplitude and
phase, and becomes a first order autoregression if lc is 0
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or p. Moreover, it can be shown that as r ! 1, then sk
2 ! 0

and the stochastic cycle reduces to the stationary determi-
nistic cycle:

yt ¼ y0 coslct þ y0
* sinlct; t ¼ 1; . . . ;T : ð2Þ

Schwing and Mendelssohn [1997] show how to put the
other terms into state-space format.
[11] In all of our state-space models the different compo-

nents are estimated simultaneously by maximum likelihood
methods, and our oscillatory terms are stochastic and
adaptive. This allows the models to deal with possible
asymmetry in the data as reported by An [2004] and
Rodgers et al. [2004].
[12] The STAMP software [Koopman et al., 2000] was

used for model estimation. The program can handle all
forms of the state-space model and provides a range of
diagnostic tools to analyze the fit of each model. When a
time series has missing data, the state-space methodology is
capable of producing estimates of the hyperparameters
(these are the variance terms and AR parameter in the
Kalman filter) as well as the missing data points; however,
the STAMP software has not implemented this capability.
Where only one or two data points were missing, such as in
the Darwin SLP series, they were linearly interpolated.

When many points were missing, a shorter series was used.
For this reason, our analysis of the Darwin SLP series
begins in 1882 while the Tahiti SLP series starts in 1933
even though both original series begin in 1882. The NOI
series runs from 1950–2003. For each model, extensive
checking for lack of fit was performed on the residuals and
the smoothed innovations, including test of normality of the
innovations [see Harvey and Koopman, 1992; Koopman et
al., 2000]. The model chosen for each series was the one
that had the minimum AIC value and showed no lack of fit
in the residuals.

3. Results

[13] The best state-space model for the SOI consists of a
trend, a deterministic seasonal, and a 4.1 year stochastic
cycle. The trend is relatively level until the mid 1950’s, and
then begins a consistent decline (Figure 1a, note that for
comparison purposes the negative of the SOI trend is shown
in this figure). The stochastic cycle clearly delineates the
El Niño/La Niña events in its relative minima and maxima,
in many ways more clearly than does the original series
(Figure 2), since both the trend and the higher frequency
variations have been filtered out.
[14] However, an examination of the component SLP

series that make up the SOI, Tahiti and Darwin, shows that
differencing these series in an index obscures some of the
underlying dynamics. The best model for Tahiti has a
constant trend, a deterministic seasonal, and two cycles
(the lower frequency cycle is discussed below; the other is aFigure 1. (a) The estimated trend terms for the negative

COADS-based SOI (blue, [�0.58, 0.019]), Darwin SLP
(red, [97.8, 101.25]), yearly NINO3 (green, [�0.104,
0.575]), and the negative NOI (black, [�0.53, 0.53]). The
numbers in brackets give the range of each of the variables
on the y-axis. (b) The estimated NINO3 trend (black) and
trend plus stochastic cycle (red).

Figure 2. Comparison of the stochastic cycles from the
best state-space model for (a) negative Darwin SLP (red)
and the SOI (blue); (b) Darwin SLP (red) and the NINO3
temperature series (blue); (c) Darwin SLP (red) and the
negative NOI (blue).
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nearly deterministic high-frequency cycle), while the best
model for Darwin consists of a trend, a deterministic
seasonal, and a stochastic cycle with a period of 3.85 years
(see Figure 1a for the trend term and Figure 3 for the cycle).
[15] The Darwin trend is almost identical to the negative of

the SOI trend (Figure 1a), and the stochastic cycle term does
just as well at identifying El Niño events as either the SOI or
the stochastic cycle estimated from the SOI. As Tahiti has a
constant trend, the long-term trend term in the SOI is due
solely to changes at Darwin. The estimated Tahiti cycle and
the negative of the Darwin cycle are very similar (Figure 3a).
However, closer examination of the two series since 1950
(Figure 3b), shows no consistent pattern in their differences
during El Niño events. For some El Niños (e.g., 1982–83),
both Darwin and Tahiti contribute to the minimum in the SOI
series. However for most events, the contribution of Darwin
and Tahiti are not equal, and most of the cyclic behavior in
the SOI is captured by the Darwin series.
[16] The best model for the yearly NINO3 series also

includes a trend term and a stochastic cycle, with many of
the same features of the Darwin decomposition (see
Figure 1a for the trend term, Figure 2 for the cycle).
Although NINO3 was estimated from yearly data and
Darwin from monthly data, both the trends and the cycles
are very similar (the trends have an r of 0.94 if we correlate
the NINO3 trend with the June values of the Darwin trend;
other months produce similar results). Both trends have
inflection points around 1920–21, 1940 and 1956, with an
increase in the slope in 1971 (Figure 1a).

[17] The best model for the NOI is also a trend, a
deterministic seasonal, and a stochastic cycle with a period
of 4.77 years (see Figure 1a for the trend term, Figure 2 for
the cycle). While the sharp increase since the mid 1950’s is
the same as for Darwin and NINO3 (which is not surprising
since the NOI is the pressure at the North Pacific High minus
Darwin), there are also stronger inflection points in the NOI
trend in the early 1970’s, the late 1980’s and the late 1990’s.
The cyclic terms also reflect significant differences even
though Darwin SLP is part of the index (Figure 2).
[18] The damping factor r in the estimated stochastic

cycles for the tropical Pacific series are quite high (0.94 for
the SOI, 0.92 for Darwin, 0.91 for Tahiti), giving the series
a longer ‘‘memory’’, so that two or three higher amplitude
events in a short time period (e.g., the 1990’s) are not
inconsistent with the assumption of stationarity. The best
model for the NOI has a smaller damping factor (0.68). The
relative ‘‘memory’’ of a large event that lasts two cycles in
the NOI will remain for five cycles in the tropical indices.
Thus, the contribution of ‘‘shocks’’ to ENSO signals in the
extratropics is shorter-lived than in the tropical Pacific. The
NOI also displays different inflection points than the SOI,
Darwin and NINO3 trends, suggesting that long-term cli-
mate variability in the Pacific may involve independent
tropical and extratropical atmospheric forcing, which may
stimulate the ocean at different times.

4. Discussion

[19] A series of papers have debated whether El Niños
have become more frequent in recent years [Trenberth and
Hoar, 1997; Harrison and Larkin, 1997; Rajagopalan et
al., 1997]. As Rajagopalan et al. point out, the choice of
model can affect the outcome of any test for increased
occurrence. Trenberth and Hoar [1997] assume a stationary
ARMA model, while we have shown these indices are
composed of a nonstationary trend and a stationary but
stochastic cyclic term, and therefore are nonstationary in
nature. The stationary stochastic cycles produced by the
state-space models reflect the oscillation between El Niño
and La Niña events and, due to their stationarity, do not
support the idea that El Niños have become more frequent
(a constant probability of occurrence does not imply a
uniform count through time).
[20] The NINO3 trend term has been increasing, partic-

ularly since the early 1950’s, so that in a model assuming a
constant trend, more El Niño events (per Trenberth and
Hoar [1997]), as defined by this index, will be seen as time
progresses. A stationary stochastic cycle is the best fit to the
detrended NINO3 series from the class of models we have
examined, and this model shows no lack of fit to the data
based on tests of the model residuals (i.e., plots of the
standardized residuals, cusum and cusum-squared tests, and
residuals tests for autocorrelation and significant spectral
power). Thus this increasing trend in the NINO3 series
since the early 1950’s appears to explain the discrepancy in
the debate.
[21] Moreover, if there were an asymmetry in the data, as

reported by An [2004] and Rodgers et al. [2004], that was
not being captured by the state-space model, this should be
seen in at least one of the residual tests. No such asymmetry
is seen in the residuals, either because our model compo-

Figure 3. (a) The estimated stochastic cycle for Tahiti SLP
(blue) and the negative Darwin SLP stochastic cycle (red).
(b) Same as in (a) but zoomed-in for 1950–2001. The major
El Niños as defined by Schwing et al. [2002] are labeled.
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nents are estimated simultaneously and the cyclic term is
stochastic, or there is no asymmetry in the series.
[22] However, while the frequency of El Niño events

does not appear to have changed, there is some evidence
that the amplitudes of the events have increased in recent
years. The state-space decomposition assumes that the
amplitudes of the cycle are normally distributed. A density
plot (not shown) of the smoothed estimates of the stochastic
cycle of the NINO3 observations (a density plot calculates a
histogram of the observations and fits a probability density
estimate to the histogram) is slightly long-tailed, mainly
because of a few exceptionally large values in recent years.
A Q-Q plot (not shown) of the stochastic cycle (the Q-Q
plot compares the quantiles of a standardized normal
distribution versus the quantiles of the standardized
observed data) also suggests that there are slightly more
observations in the higher and lower tails than would be
expected from a normal distribution, and that these obser-
vations are from the later years (large positive values in
1983, 1987, 1988, 1997; large negative values in 1984,
1985, 1995, 1996).
[23] These outlier events suggest the amplitude of the

cyclic components may be increasing in recent years, but it
is premature to tell. If the roughly stationary cyclic compo-
nents of these series are combined with the trends
(Figure 1b), we see that ENSO events are now starting
from a higher level, leading to a stronger El Niño (weaker
La Niña) signal in the atmosphere and ocean. For NINO3,
for example, the background sea surface temperature for
recent El Niño events is more than 0.5�C warmer than for
events prior to 1950 (Figure 1b), meaning that recent
El Niños are likely to have a stronger tropical Pacific signal,
even though the stochastic ENSO cyclic component can be
adequately modeled as a stationary process.
[24] Based on the estimated trends, the levels of these

series in recent decades have changed by an amount equal
to 30–50% of the amplitude of their corresponding annual
cycle or cyclic ENSO term (Figures 1 and 3). The state-
space decomposition has been a key tool in showing the
independence between the ca. 4-year cyclical behavior of
ENSO and what may be a global climate trend signal that
has accelerated in the past 50 years, which combine to
create the observed indices. While the source of the trend is
not revealed by this analysis, it is clearly an important
component of the climate signals of these commonly used
indices.
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